NCERT Computer Science Class #11 – Chapter #2 Solutions

Chapter 2 – Encoding Schemes and Number System

Exercise Solutions

1. Write base values of binary, octal and hexadecimal number system.

The base values of different number systems are as follows:

 Binary Number System:  Base 2
 Octal Number System:  Base 8
 Hexadecimal Number System:  Base 16

These systems use different sets of symbols to represent values, with binary using 0 and 1, octal using digits 0-7, and hexadecimal using digits 0-9 and letters A-F.

2. Give full form of ASCII and ISCII.

 ASCIIAmerican Standard Code for Information Interchange
 ISCIIIndian Script Code for Information Interchange

3. Try the following conversions:

(i) (514)8 = (?)10

To convert the octal number (514)8 to decimal, we can use the positional value of each digit in the octal system, which is base 8. Each digit is multiplied by 8 raised to the power of its position (counting from right to left, starting at 0).

Conversion Steps:

– Identify the digits:  5, 1, 4

-Assign positional values:

  • 5 is in the 82 place
  • 1 is in the 81 place
  • 4 is in the 80 place

–  Calculate the decimal value:

(514)8  =  5×82  +  1×81  +  4×80

            =  5×64  +  1×8  +  4×1

            =  320  +  8  +  4

            =  332

(ii) (220)8   =   (?)2

Lets convert from Octal to Decimal first:

(220)8​  =   2×82   +   2×81   +   0×80

            =   2×64   +  2×8     +   0×1

            =   128     +  16       +      0

            =   144

Now, convert to Binary:

To convert the decimal number 144 to binary, you can use the method of successive division by 2.

Here’s how it works:

– Divide the number by 2 and record the quotient and the remainder.

– Continue dividing the quotient by 2 until the quotient becomes 0.

– The binary equivalent is the remainders read in reverse order (from bottom to top).

DivisionQuotientRemainder
144 ÷ 2720
72 ÷ 2360
36 ÷ 2180
18 ÷ 290
9 ÷ 241
4 ÷ 220
2 ÷ 210
1 ÷ 201

Now, read the remainders from bottom to top:  10010000

(iii) (76F)16   =   (?)10

Follow below steps:

Identify the values of each digit:

  • 7 corresponds to 7
  • 6 corresponds to 6
  • F corresponds to 15

Apply the positional values:

Each digit in a hexadecimal number is multiplied by 16n, where n is the position of the digit from right to left, starting at zero:

  • For 7

                7 × 162  =  7 × 256  =  1792

  • For 6

                6 × 161  = 6 × 16 = 96

  • For F

                15 × 160  =  15 × 1  =  15

Sum the results

                  1792  +  96  +  15  =  1903

Thus, the decimal equivalent of (76F)16​ is 1903

(iv)  (4D9)16    =   (?)10

Identify the values of each digit:

  • 4 corresponds to 44
  • D corresponds to 13
  • 9 corresponds to 9

Apply the positional values:

Each digit in a hexadecimal number is multiplied by 16n, where n is the position of the digit from right to left, starting at zero:

  • For 4

            4  ×  162  =  4  ×  256  =  1024

  • For D

            13  ×  161  =  13 × 16  =  208

  • For 9

            9  ×  160  =  9×1  =  9

Sum the results

            1024  +  208  +  9  =  1241

Thus, the decimal equivalent of (4D9)16​ is 1241.

(v) (11001010)2   =   (?)10

Step 1: Identify the values of each digit

Each digit in a binary number represents a power of 2, starting from the rightmost digit (which is 20).

Postion from right76543210
Binary Digit11001010

Step 2: Calculate the decimal value

        1  ×  27  =  1  ×  128  =  128

        1  ×  26  =  1  ×  64  =  64

        0  ×  25  =  0  ×  32  =  0

        0  ×  24  =  0  ×  16  =  0

        1  ×  23  =  1  ×  8  =  8

        0  ×  22  =  0  ×  4  =  0

        1  ×  21  =  1  ×  2  =  2

        0  ×  20  =  0  ×  1  =  0

Step 3: Sum the results

        128  +  64  +  0  +  0  +  8  +  0  +  2  +  0  =  202

Thus, the decimal equivalent of the binary number 11001010 is 202.

(vi) (1010111)2  =  (?)10

Step 1: Identify the values of each digit

Each digit in a binary number represents a power of 2, starting from the rightmost digit (which is 20).

Position from right6543210
Binary Digit1010111

Step 2: Calculate the decimal value

        1  ×  26  =  1  ×  64  =  64

        0  ×  25  =  0  ×  32  =  0

        1  ×  24  =  1  ×  16  =  16

        0  ×  23  =  0  ×  8  =  0

        1  ×  22  =  1  ×  4  =  4

        1  ×  21  =  1  ×  2  =  2

        1  ×  20  =  1  ×  1  =  1

Step 3: Sum the results

        64  +  0  +  16  +  0  +  4  +  2  +  1  =  87

Thus, the decimal equivalent of the binary number 1010111 is 87. 

4. Try the following conversions:

(i) (54)10  =   (?)2

Step-by-Step Conversion

54 ÷ 2 = 27, remainder 0

27 ÷ 2 = 13, remainder 1

13 ÷ 2 = 6, remainder 1

6 ÷ 2 = 3, remainder 0

3 ÷ 2 = 1, remainder 1

1 ÷ 2 = 0, remainder 1

Thus 54 in binary is: 110110

(ii)  (120)10  =  (?)2

Step-by-Step Conversion

120 ÷ 2 = 60, remainder 0

60 ÷ 2 = 30, remainder 0

30 ÷ 2 = 15, remainder 0

15 ÷ 2 = 7, remainder 1

7 ÷ 2 = 3, remainder 1

3 ÷ 2 = 1, remainder 1

1 ÷ 2 = 0, remainder 1

Thus 120 in binary is 1111000

(iii) (76)10  =  (?)8

Step-by-Step Conversion

76 ÷ 8 = 9, remainder 4

9 ÷ 8 = 1, remainder 1

1 ÷ 8 = 0, remainder 1

This 76 in Octal is 114

(iv) (889)10  =  (?)8

Step-by-Step Conversion

889 ÷ 8 = 111, remainder 1

111 ÷ 8 = 13, remainder 7

13 ÷ 8 = 1, remainder 5

1 ÷ 8 = 0, remainder 1

Thus 889 in Octal is 1571

(v)  (789)10  =  (?)16

Step-by-Step Conversion

789 ÷ 16 = 49, remainder 5

49 ÷ 16 = 3, remainder 1

3 ÷ 16 = 0, remainder 3

Thus 789 in hexadecimal is 315

(vi)  (108)10  =  (?)16

Step-by-Step Conversion

108 ÷ 16 = 6, remainder 12 (which is represented as C in hexadecimal)

6 ÷ 16 = 0, remainder 6

Thus 108 in Hexadecimal is 6C

5. Try the following conversions from Octal to Decimal:

(i) 145

Steps:

        ( 1 × 82 ) + (4 × 81 ) + ( 5 × 80 )

        = ( 1 × 64 ) + ( 4 × 8 ) + ( 5 × 1 )

        = 64 + 32 + 5

        = 101

Thus 145 in Octal is 101 in Decimal

(ii) 6760

Steps:

        ( 6 × 83 ) + ( 7 × 82 ) + ( 6 × 81 ) + ( 0 × 80 )

        = ( 6 × 512 ) + ( 7 × 64 ) + ( 6 × 8 ) + ( 0 × 1 )

        = 3072 + 448 + 48 + 0

        = 3568

Thus 6760 in Octal is 3568 in Decimal.

(iii) 455

Steps:

( 4 × 82 ) + ( 5 × 81 ) + ( 5 × 80 )

= ( 4 × 64 ) + ( 5 × 8 ) + ( 5 × 1 )

= 256 + 40 + 5

= 301

Thus 455 in Octal is 301 in Decimal

(iv) 10.75

Steps:

Calculate the Decimal value:

( 1 × 81 ) + ( 0 × 80 )

= ( 1 × 8 ) + ( 0 × 1 )

= 8 + 0

        = 8

Convert the fractional part (0.75)

( 7 × 8−1 ) + ( 5 × 8−2 )

= ( 7 × 1/8 ​) + ( 5 × 1/64​ )

= 7/8  +   5/64

= 61/64

Now add both parts:

8  +  61/64

= 8.953125

6. Express the following decimal numbers to hexadecimal numbers:

(i) 548

Steps:

548 ÷ 16 = 34, remainder 4

34 ÷ 16 = 2, remainder 2

2 ÷ 16 = 0, remainder 2

Thus 548 is 224 in Hexadecimal

(ii) 4052

Steps:

4052 ÷ 16 = 253, remainder 4

253 ÷ 16 = 15, remainder 13 (which is represented as D in hexadecimal)

15 ÷ 16 = 0, remainder 15 (which is represented as F in hexadecimal)

Thus 4052 is FD4 in Hexadecimal

(iii) 58

Steps:

58 ÷ 16 = 3, remainder 10 (which is represented as A in hexadecimal)

3 ÷ 16 = 0, remainder 3

Thus 58 is 3A in Hexadecimal

(iv) 100.25

Step 1: Convert the Integer Part (100)

100 ÷ 16 = 6, remainder 4

6 ÷ 16 = 0, remainder 6

Step 2: Convert the Fractional Part (0.25)

Multiply by 16:

0.25 × 16 = 4.0

Thus 100.25 in Hexadecimal is 64.4

7. Express the following hexadecimal numbers into equivalent decimal numbers.

(i) 4A2

Identify the positions and their values:

The hexadecimal number is read from right to left, where each digit’s position corresponds to a power of 16.

The digits in 4A2 are:

  • 22 in the 160 (ones) place
  • AA (which is 10 in decimal) in the 161 (sixteens) place
  • 4 in the 162 (two hundred fifty-sixes) place

Calculate the decimal value for each digit:

        2 × 160 = 2 × 1 = 2

        10 × 161 = 10 × 16 = 160

        4 × 162 = 4 × 256 = 1024

Sum all the values:

        1024 + 160 + 2 = 1186 

Thus 4A2 in Decimal is 1186

(ii) 9E1A

Calculate decimal value for each digit:

        9 × 163 = 9 × 4096 = 36864

        14 × 162 = 14 × 256 = 3584

        1 × 161 = 1 × 16 = 16

        10 × 160 = 10 × 1 = 10

Sum all the values:  40474

(iii)  6BD

Calculate decimal value for each digit:

        6 × 162 = 6 × 256 = 1536

        11 × 161 = 11 × 16 = 176

        13 × 160 = 13 × 1 = 13

Sum all the values: 1725

(iv)  6C.34

Calculate decimal value for integer part (6C)

6 × 161 = 6 × 16 = 96

12 × 160 = 12 × 1 = 12

Convert the fractional part (.34)

        3 × 16−1   =   0.1875

        4 × 16−2  =  0.015625  

Sum all values and combine both parts to get the answer: 108.203125.

8. Convert the following binary numbers into octal and hexadecimal numbers.

(i) 1110001000

Convert to Decimal first: 904

Now, convert 904 to Octal: 

        904 ÷ 8 = 113 with a remainder of 0

        113 ÷ 8 = 14 with a remainder of 1

        14 ÷ 8 = 1 with a remainder of 6

        1 ÷ 8 = 0 with a remainder of 1

Octal value: 1610

Now, convert 904 to Hexadecimal:

        904 ÷ 16 = 56 with a remainder of 8

        56 ÷ 16 = 3 with a remainder of 8

        3 ÷ 16 = 0 with a remainder of 3

Hexadecimal value: 388

(ii)  110110101

Convert to Decimal first: 437

Now convert 437 to Octal:

        437 ÷ 8 = 54 with a remainder of 5

        54 ÷ 8 = 6 with a remainder of 6

        6 ÷ 8 = 0 with a remainder of 6

Octal value: 665

Now convert 437 to Hexadecimal:

        437 ÷ 16 = 27 with a remainder of 5

        27 ÷ 16 = 1 with a remainder of 11 (which is represented as B in hexadecimal)

        1 ÷ 16 = 0 with a remainder of 1

Hexadecimal value: 1B5

(iii)  1010100

Convert to Decimal first: 84

Now convert 84 to Octal: 

        84 ÷ 8 = 10 with a remainder of 4

        10 ÷ 8 = 1 with a remainder of 2

        1 ÷ 8 = 0 with a remainder of 1

Octal value: 124

Now convert 84 to Hexadecimal:

        84 ÷ 16 = 5 with a remainder of 4

        5 ÷ 16 = 0 with a remainder of 5

Hexadecimal value: 54

(iv)  1010.1001

Convert to Decimal first: 10.5625

Now convert 10.5625 to Octal:

Integer Part:

        10 ÷ 8 = 1 with a remainder of 2

        1 ÷ 8 = 0 with a remainder of 1

Fractional Part:

        0.5625 × 8 = 4.5 (Take the integer part, which is 4)

        0.5 × 8 = 4.0 (Take the integer part, which is 4)

Octal value: 12.44

Now convert 10.5625 to Hexadecimal

Integer Part:

        10 ÷ 16 = 0 with a remainder of 10 (which is represented as A in hexadecimal)

Fractional Part:

        0.5625 × 16 = 9.0 (Take the integer part, which is 9)


Hexadecimal value: A.9

9. Write binary equivalent of the following octal numbers.

(i) 2306

Convert to Decimal: 1222

Now convert 1222 to Binary:

1222 ÷ 2 = 611 with a remainder of 0

611 ÷ 2 = 305 with a remainder of 1

305 ÷ 2 = 152 with a remainder of 1

152 ÷ 2 = 76 with a remainder of 0

76 ÷ 2 = 38 with a remainder of 0

38 ÷ 2 = 19 with a remainder of 0

19 ÷ 2 = 9 with a remainder of 1

9 ÷ 2 = 4 with a remainder of 1

4 ÷ 2 = 2 with a remainder of 0

2 ÷ 2 = 1 with a remainder of 0

1 ÷ 2 = 0 with a remainder of 1

Binary value: 1 0 0 1 1 0 0 0 1 1 0

(ii) 5610

Convert to Decimal: 2952

Now convert 2952 to Binary:

        2952 ÷ 2 = 1476 with a remainder of 0

        1476 ÷ 2 = 738 with a remainder of 0

        738 ÷ 2 = 369 with a remainder of 0

        369 ÷ 2 = 184 with a remainder of 1

        184 ÷ 2 = 92 with a remainder of 0

        92 ÷ 2 = 46 with a remainder of 0

        46 ÷ 2 = 23 with a remainder of 0

        23 ÷ 2 = 11 with a remainder of 1

        11 ÷ 2 = 5 with a remainder of 1

        5 ÷ 2 = 2 with a remainder of 1

        2 ÷ 2 = 1 with a remainder of 0

        1 ÷ 2 = 0 with a remainder of 1

Binary value: 101110001000

(iii) 742

Convert to Decimal: 482

Now convert 482 to Binary:

        482 ÷ 2 = 241 with a remainder of 0

        241 ÷ 2 = 120 with a remainder of 1

        120 ÷ 2 = 60 with a remainder of 0

        60 ÷ 2 = 30 with a remainder of 0

        30 ÷ 2 = 15 with a remainder of 0

        15 ÷ 2 = 7 with a remainder of 1

        7 ÷ 2 = 3 with a remainder of 1

        3 ÷ 2 = 1 with a remainder of 1

        1 ÷ 2 = 0 with a remainder of 1

Binary value: 111100010

(iv) 65.203

Convert to Decimal: 53.255859375

Now convert 53.255859375 to Binary:

Integer Part:

        53 ÷ 2 = 26 with a remainder of 1

        26 ÷ 2 = 13 with a remainder of 0

        13 ÷ 2 = 6 with a remainder of 1

        6 ÷ 2 = 3 with a remainder of 0

        3 ÷ 2 = 1 with a remainder of 1

        1 ÷ 2 = 0 with a remainder of 1

Fractional Part:

        0.255859375 × 2 = 0.51171875 (integer part = 0)

        0.51171875 × 2 = 1.0234375 (integer part = 1)

        0.0234375 × 2 = 0.046875 (integer part = 0)

        0.046875 × 2 = 0.09375 (integer part = 0)

        0.09375 × 2 = 0.1875 (integer part = 0)

        0.1875 × 2 = 0.375 (integer part = 0)

        0.375 × 2 = 0.75 (integer part = 0)

        0.75 × 2 = 1.5 (integer part = 1)

        0.5 × 2 = 1.0 (integer part = 1, and we stop here as we reach zero)

Thus 65.203 in Binary is: 110101 . 010000011

10. Write binary representation of the following hexadecimal numbers:

(i) 4026

Convert to Decimal:  16422

Now convert 16422 to Binary:

        16422 ÷ 2 = 8211 with a remainder of 0

        8211 ÷ 2 = 4105 with a remainder of 1

        4105 ÷ 2 = 2052 with a remainder of 1

        2052 ÷ 2 = 1026 with a remainder of 0

        1026 ÷ 2 = 513 with a remainder of 0

        513 ÷ 2 = 256 with a remainder of 1

        256 ÷ 2 = 128 with a remainder of 0

        128 ÷ 2 = 64 with a remainder of 0

        64 ÷ 2 = 32 with a remainder of 0

        32 ÷ 2 = 16 with a remainder of 0

        16 ÷ 2 = 8 with a remainder of 0

        8 ÷ 2 = 4 with a remainder of 0

        4 ÷ 2 = 2 with a remainder of 0

        2 ÷ 2 = 1 with a remainder of 0

        1 ÷ 2 = 0 with a remainder of 1

Binary value: 100000000100110

(ii)  BCA1

Convert to Decimal: 48289

Now convert 48289 to Binary:

        48289 ÷ 2 = 24144 with a remainder of 1

        24144 ÷ 2 = 12072 with a remainder of 0

        12072 ÷ 2 = 6036 with a remainder of 0

        6036 ÷ 2 = 3018 with a remainder of 0

        3018 ÷ 2 = 1509 with a remainder of 0

        1509 ÷ 2 = 754 with a remainder of 1

        754 ÷ 2 = 377 with a remainder of 0

        377 ÷ 2 = 188 with a remainder of 1

        188 ÷ 2 = 94 with a remainder of 0

        94 ÷ 2 = 47 with a remainder of 0

        47 ÷ 2 = 23 with a remainder of 1

        23 ÷ 2 = 11 with a remainder of 1

        11 ÷ 2 = 5 with a remainder of 1

        5 ÷ 2 = 2 with a remainder of 1

        2 ÷ 2 = 1 with a remainder of 0

        1 ÷ 2 = 0 with a remainder of 1

Binary value: 1011110010100001

(iii)  98E

Convert to Decimal: 2446

Now convert 2446 to Binary:

        2446 ÷ 2 = 1223 with a remainder of 0

        1223 ÷ 2 = 611 with a remainder of 1

        611 ÷ 2 = 305 with a remainder of 1

        305 ÷ 2 = 152 with a remainder of 1

        152 ÷ 2 = 76 with a remainder of 0

        76 ÷ 2 = 38 with a remainder of 0

        38 ÷ 2 = 19 with a remainder of 0

        19 ÷ 2 = 9 with a remainder of 1

        9 ÷ 2 = 4 with a remainder of 1

        4 ÷ 2 = 2 with a remainder of 0

        2 ÷ 2 = 1 with a remainder of 0

        1 ÷ 2 = 0 with a remainder of 1

Binary value: 100110001110

(iv)  132.45

Convert to Decimal: 306.26953125

Now convert the integer part to Binary:

306 ÷ 2 = 153 with a remainder of 0

153 ÷ 2 = 76 with a remainder of 1

76 ÷ 2 = 38 with a remainder of 0

38 ÷ 2 = 19 with a remainder of 0

19 ÷ 2 = 9 with a remainder of 1

9 ÷ 2 = 4 with a remainder of 1

4 ÷ 2 = 2 with a remainder of 0

2 ÷ 2 = 1 with a remainder of 0

1 ÷ 2 = 0 with a remainder of 1

Now convert the fraction part to Binary:

0.26953125 × 2 = 0.5390625 (integer part = 0)

0.5390625 × 2 = 1.078125 (integer part = 1)

0.078125 × 2 = 0.15625 (integer part = 0)

0.15625 × 2 = 0.3125 (integer part = 0)

0.3125 × 2 = 0.625 (integer part = 0)

0.625 × 2 = 1.25 (integer part = 1)

0.25 × 2 = 0.5 (integer part = 0)

0.5 × 2 = 1.0 (integer part = 1, and we stop here as we reach zero)

Combine to get final Binary value: 100110010 . 01000101

11. How  does computer understand  the following text?   (hint: 7 bit ASCII code).

(i) HOTS

Each character in “HOTS” has a specific ASCII value:

H: ASCII = 72,     Binary = 1001000

O: ASCII = 79,     Binary = 1001111

T: ASCII = 84,     Binary = 1010100

S: ASCII = 83,      Binary = 1010011

(ii)  Main

M:  ASCII = 77,        Binary = 1001101

a:  ASCII = 97,          Binary = 1100001

i:  ASCII = 105,         Binary = 1101001

n:  ASCII = 110,        Binary = 1101110

(iii) CaSe

C:  ASCII = 67      Binary = 1000011

a:  ASCII = 97      Binary = 1100001

S: ASCII = 83       Binary = 1010011

e:  ASCII = 101    Binary = 1100101

12. The hexadecimal number system uses 16 literals (0 – 9, A– F). Write down its base value.

The base value in Hexadecimal system is: 16

13. Let X be a number system having B symbols only. Write down the base value of this number system.


In a number system where XX has BB symbols, the base value of that number system is B.

Example:

        In the Decimal system (base-10), there are 10 symbols (0-9), so B=10

        In the Binary system (base-2), there are 2 symbols (0 and 1), so B=2

        In the Hexadecimal system (base-16), there are 16 symbols (0-9 and A-F), so B=16.

14.  Write the equivalent hexadecimal and binary values for each character of the phrase given below.                          हम सब एक.

Representation:

: Hex = 0939,      Binary = 0000100100111001

: Hex = 092E,     Binary = 0000100100101110

: Hex = 0938,     Binary = 0000100100111000

: Hex = 092C,     Binary = 0000100100101100

: Hex = 090F,      Binary = 0000100100001111

: Hex = 0915,     Binary = 0000100100010101

15.  What is the advantage of preparing a digital content in Indian language using UNICODE font?

  1. Universal Compatibility: Ensures consistent display across various devices and operating systems without needing specific font installations.
  2. Multilingual Support: Allows seamless integration of multiple Indian languages on a single platform.
  3. Consistent Representation: Maintains uniformity in text appearance, reducing misinterpretation when sharing content.
  4. Ease of Use: Simplifies typing and displaying text without requiring special software or encoding schemes.

17.  Encode the word ‘COMPUTER’ using ASCII and convert the encode value into Binary value.

CharacterASCII ValueBinary
C671000011
O791001111
M771001101
P801010000
U851010101
T841010100
E691000101
R821010010

Posts created 29

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Posts

Begin typing your search term above and press enter to search. Press ESC to cancel.

Back To Top